Facebook Icon Youtube Icon Twitter Icon Flickr Icon Vimeo Icon RSS Icon Itunes Icon Pinterest Icon
Friday, December 9, 2016

Search Google Appliance

UMD Capitol Hill Forum Addresses Health Disparities Research & Action for Equity

September 23, 2016
Contacts: 

Contacts: Elise Carbonaro, 301-405-6501

COLLEGE PARK, Md. – The University of Maryland, in collaboration with Rep. John P. Sarbanes and the Big Ten Academic Alliance, recently convened more than 100 people for a Research on the Hill forum focused on strategies to achieve health equity at the Rayburn House Office Building in Washington, D.C. Moderated by Stephen B. Thomas, Ph.D., professor and director of the Maryland Center for Health Equity in the UMD School of Public Health, the panel discussion engaged experts from academia, federal health agencies and the private business sector in a candid conversation about how to eliminate racial and ethnic health disparities among vulnerable populations.

“Our exploratory research holds the solutions to many of the most challenging problems of our day,” said UMD Vice President and Chief Research Officer Patrick G. O’Shea, Ph.D. “As a university, it is our mission to create and understand knowledge to develop better ways to house and heal and fuel and feed our people in advanced societies that are just, secure, and free. Achieving health equity touches on the ‘heal’ aspect of that mission.”

The topics ranged from the progress that has been made in access to medical care as a result of the Affordable Care Act (ACA) to challenges that still remain in improving quality of care and in making the medical care system incorporate public health and address the social determinants of health that prevent people from acting health promotion and disease prevention recommendations. 

“The state of Maryland has embraced the ACA and there is clear evidence that the new incentives are indeed moving hospital systems away from a fee-for-service business model to one that rewards quality care and positive health outcomes over the volume of procedures,” said Thomas. “While the transition is not perfect, our state is a national leader for what the future of health care will look like.”

Panel members shared examples of effective and innovative community-based health interventions and public-private partnerships that are making a difference through culturally-tailored health promotion and disease prevention services, and highlighted the emergence of social determinants of health such as poverty, discrimination and residential segregation as factors that must be overcome.

 “I’m convinced that if you address racial and ethnic disparities with respect to the delivery of health care and health care coverage in this country, you will build the best health care system we can possibly have because diversity is our country’s hallmark,” said Congressman Sarbanes, who, as a member of the House Energy and Commerce Committee, has been a tireless advocate for improving healthcare quality and addressing health disparities.
 
To achieve health equity, researchers, policymakers, and industry leaders must address broader issues beyond the traditional biomedical model and build trust between those who control health care delivery system and those who have lost hope in the system, said members of the panel. 

The panelists recommended that health equity be incorporated into all public policies, not just those related to health care, to reduce and ultimately eliminate health disparities. 

Panel members included:

  • Margo Edmunds, Ph.D., Vice President, Evidence Generation and Translation at Academy Health;
  • J. Nadine Gracia, M.D., M.S.C.E., Deputy Assistant Secretary for Minority Health and Director of the Office of Minority Health within the U.S. Department of Health and Human Services;
  • Julia Huggins, President of Cigna Mid-Atlantic;
  • Kolawole Okuyemi, M.D., MPH, Professor of the Department of Family Medicine and Community Health, Director of the Program in Health Disparities Research and Inaugural Endowed Chair for Health Equity at the University of Minnesota; and
  • Eliseo Pérez-Stable, M.D., Director of the National Institute on Minority Health and Health Disparities at the National Institutes of Health.

House Democratic Whip Steny H. Hoyer, who represents Maryland’s 5th Congressional District and is a distinguished UMD alumnus, also joined the event and emphasized that as an interconnected community, we should all care about health disparities.
 
“It is unacceptable that in the United States, where all are created equal in the words of our Declaration of Independence, that one’s access to healthcare may be higher or lower as a result of race, gender, or income,” said Congressman Hoyer. “Everybody being healthy is of concern to each and every one of us.”
 
He discussed how we must continue to defend the patient protections that Americans are benefiting from thanks to the ACA, such as the no-cost access to preventive services like mammograms and immunizations, as well as remind people of the dramatic increase in the number of people, particularly people of color, who now have health coverage as a result.

The event was held as part of the University of Maryland’s Research on the Hill series, which is aimed at raising awareness of research with great societal significance.

View the conversation at: https://youtu.be/HPedKr0jZLQ

UMD Study Finds Connecting Uninsured Patients to Primary Care Could Reduce ER Use

May 6, 2015
Contacts: 

Kelly Blake 301-405-9418
Hillery Tsumba 301-628-3425

Montgomery County, Md. Initiative Could Improve Health, Reduce Costs

COLLEGE PARK, Md. – An intervention to connect low-income uninsured and Medicaid patients to a reliable source of primary health care shows promise for reducing avoidable use of hospital emergency departments in Maryland. A University of Maryland School of Public Health study evaluating the results of the intervention was published this week in the May issue of the journal Health Affairs

For twenty years, use of hospital emergency departments has been on the rise in the United States, particularly among low-income patients who face barriers to accessing health care outside of hospitals, including not having an identifiable primary health care provider. Almost half of emergency room visits are considered “avoidable.” The Emergency Department-Primary Care Connect Initiative of the Primary Care Coalition, which ran from 2009 through 2011, linked low-income uninsured and Medicaid patients to safety-net health clinics. 

“Our study found that uninsured patients with chronic health issues – such as those suffering from hypertension, diabetes, asthma, COPD, congestive heart failure, depression or anxiety – relied less on the emergency department after they were linked to a local health clinic for ongoing care,” says Dr. Karoline Mortensen, assistant professor of health services administration at the University of Maryland School of Public Health and senior researcher. “Connecting patients to primary care and expanding the availability of these safety-net clinics could reduce emergency department visits and provide better continuity of care for vulnerable populations.”  

Funded by a grant from the Centers for Medicare & Medicaid Services and the Maryland Department of Health and Mental Hygiene, the initiative engaged all five of the hospitals operating in Montgomery County, Maryland at the time, and four safety-net clinics serving low-income patients. Using “patient navigators,” individuals trained to help patients find the care they need and can afford, these hospitals referred more than 10,000 low-income, uninsured and Medicaid patients who visited emergency departments to four local primary care clinics, with the goal of encouraging them to establish an ongoing relationship with the clinic and reduce their reliance on costly emergency department care. 

Two hospitals in Montgomery County who participated in the intervention continued the program after the initial grant period concluded because of the benefits they saw for patients and for reducing emergency department visits and associated costs. These hospitals are currently testing a new version of the intervention specifically deigned to link emergency department patients with behavioral health conditions to appropriate community-based services. 

While hospital administrators and health policy experts throughout the country are recognizing that access to primary care improves continuity of care for patients and reduces avoidable use of emergency departments, the implications of this project are particularly important for hospitals in Maryland, which are now operating under a unique all-payer model for hospital payments. Within this new payment structure, Maryland hospitals will have to meet ambitious spending, quality of care, and population health goals. Reducing avoidable use of emergency departments can help in reaching these goals.

The project provides promise not only for hospitals in Maryland but throughout the nation to improve health care experiences and outcomes for their patients. Shared learning systems were an integral component of the project so participants were learning from each other and sharing best practices throughout the project and that learning has now been documented and can be replicated in other communities.

“This was an incredibly rewarding project to work on,” says Barbara H. Eldridge, Manager of Quality Improvement at the Primary Care Coalition. “We created a learning system that permits us to sustain improved communication between patients and their providers, between hospital discharge planners and community based clinics, and across five hospitals operating in Montgomery County.” The initiative has proven successful in Montgomery County, Maryland and is being replicated in communities in other parts of the country. 

“Linking Uninsured Patients Treated In The Emergency Department To Primary Care Shows Some Promise In Maryland” was written by Theresa Y. Kim, Karoline Mortensen, and Barbara Eldridge and published in the journal Health Affairs

University Launches Dynamic, Interactive Information Website UMD Right Now

December 4, 2012
Contacts: 

Crystal Brown 301-405-4618 crystalb@umd.edu

College Park, Md. – Today, the University of Maryland launched a brand-new multimedia news and information portal, UMD Right Now, which provides members of the media and the public with real-time information on the university and its extended community.

UMD Right Now replaces Newsdesk, which previously served as the university’s news hub and central resource for members of the media. The new site is aimed at reaching broader audiences and allows visitors to keep up with the latest Maryland news and events, view photos and videos and connect with the university across all of its social media platforms.

“We designed UMD Right Now to be a comprehensive, vibrant site where visitors can find new and exciting things happening at Maryland,” said Linda Martin, executive director, Web and New Media Strategies. “Through social media, video, photos and news information, we hope to engage visitors and compel the community to explore all that Maryland has to offer.”

The new website, umdrightnow.umd.edu, contains up-to-date news releases and announcements, facts and figures about the university, a searchable database of faculty and staff experts, information highlighting innovation and entrepreneurship at UMD, additional resources for news media and other campus and athletics news.

“UMD RightNow is the place to go to find out all the things happening on and around campus on any given day,” said Crystal Brown, chief communications officer. “This website brings real-time news, events and information right to your fingertips.”

For more information and contact information for the Office of University Communications, please visit umdrightnow.umd.edu.

UMD-Led Study Sheds New Light on How Socioeconomics Impact Childhood Language Comprehension

December 8, 2016
Contacts: 

Sara Gavin 301-405-1733

COLLEGE PARK, Md. — New research from the University of Maryland Department of Hearing and Speech Sciences suggests that understanding the effect of socioeconomic status on children’s ability to learn and understand language requires identifying not just what children hear but how they use it.

Prior studies have found systematic relationships between how much caregivers talk to children and what they learn. A famous 1995 study by researchers Betty Hart and Todd Risley indicated that some children heard thirty million fewer words by their 4th birthdays than others. On average, research has found that children from higher-socioeconomic status families hear more language than their lower-socioeconomic status peers; and it is commonly assumed that exposure to fewer words is a significant barrier to language learning for children in lower-socioeconomic households.

Now, the results of a new UMD-led study forthcoming in the journal Cognition suggest that socioeconomic status differences are much more targeted .
U.S. Dept. of Education_children-progress-in-our-schools photo
“Our research tests the hypothesis that all children—regardless of socioeconomic status—learn grammatical structure with minimal input, but hearing more language allows children to retrieve their knowledge from memory more efficiently during comprehension,” said Yi Ting Huang, an Assistant Professor in the Department of Hearing and Speech Sciences, who led the study. “This means the effect of socioeconomic status on development reflects not a failure to learn language but challenges with recalling what has already been learned during communication.”

Huang and study co-authors Kathryn Leech from the University of Maryland Department of Human Development and Quantitative Methodology and Meredith Rowe from the Harvard University Graduate School of Education tested roughly 130 English-speaking three- to seven-year-olds from families of various socioeconomic levels on their comprehension of an infrequent grammatical structure (e.g., passives like “The seal is eaten by it”). Relative to the higher- socioeconomic status (SES) peers, children from lower-SES families had more difficulty understanding sentences that introduce high comprehension demands. Yet, when these demands were removed (e.g., “It was eaten by the seal”), no SES differences were found.  These findings suggest that all children learned infrequent structures, but language experience may enable some to access this information more readily during later comprehension.
 
This work also sheds light on why vocabulary size differs across socioeconomic backgrounds. Current interventions like the 30 Million Words Initiative are based on the assumption that children’s failure to learn words reflects a lack of experience with those words at home. Yet Huang and her colleagues found that even when that input exists from caregivers, learning can be challenging if children can’t accurately retrieve grammatical knowledge in order to comprehend sentences.
 
“In total, our results suggest that isolating why outcomes vary across populations requires identifying not just what children hear but how they use it,” said Huang. “Gaining a better understanding of the effects of socioeconomic status on early language development is crucial for reducing achievement gaps in school readiness. I hope our research can help in the development of new strategies and interventions to help all children with language development, regardless of their socioeconomic status.”

The full article can be downloaded here for a limited time.

Save

UMD Model Offers New Perspective on How Pluto’s “Icy Heart” Came to Be

December 1, 2016
Contacts: 

Irene Ying 301-405-5204

COLLEGE PARK, MD. – Pluto’s “icy heart” is a bright, two-lobed feature on its surface that has attracted researchers ever since its discovery by the NASA New Horizons team in 2015. Of particular interest is the heart’s western lobe, informally named Sputnik Planitia, a deep basin containing three kinds of ices—frozen nitrogen, methane and carbon monoxide—and appearing opposite Charon, Pluto’s tidally locked moon. Sputnik Planitia’s unique attributes have spurred a number of scenarios for its formation, all of which identify the feature as an impact basin, a depression created by a smaller body striking Pluto at extremely high speed.

Pluto, shown here in the front of this false-color image, has a bright ice-covered "heart." The left, roughly oval lobe is the basin provisionally named Sputnik Planitia. Sputnik Planitia appears directly opposite Pluto's moon, Charon (back). Credit: NASA/JHUAPL/SWRI.

A new study led by Douglas Hamilton, professor of astronomy at the University of Maryland, instead suggests that Sputnik Planitia formed early in Pluto’s history and that its attributes are inevitable consequences of evolutionary processes. The study was published in the journal Nature on December 1, 2016.

“The main difference between my model and others is that I suggest that the ice cap formed early, when Pluto was still spinning quickly, and that the basin formed later and not from an impact,” said Hamilton, who is lead author of the paper. “The ice cap provides a slight asymmetry that either locks toward or away from Charon when Pluto’s spin slows to match the orbital motion of the moon.”

Using a model he developed, Hamilton found that the initial location of Sputnik Planitia could be explained by Pluto’s unusual climate and its spin axis, which is tilted by 120 degrees. For comparison, Earth's tilt is 23.5 degrees. Modeling the dwarf planet’s temperatures showed that when averaged over Pluto’s 248-year orbit, the 30 degrees north and south latitudes emerged as the coldest places on the dwarf planet, far colder than either pole. Ice would have naturally formed around these latitudes, including at the center of Sputnik Planitia, which is located at 25 degrees north latitude.

Hamilton’s model also showed that a small ice deposit naturally attracts more ices by reflecting away solar light and heat. Temperatures remain low, which attracts more ice and keeps the temperature low, and the cycle repeats. This positive feedback phenomenon, called the runaway albedo effect, would eventually lead to a single dominating ice cap, like the one observed on Pluto. However, Pluto’s basin is significantly larger than the volume of ice it contains today, suggesting that Pluto’s heart has been slowly losing mass over time, almost as if it was wasting away.

Even so, the single ice cap represents an enormous weight on Pluto’s surface, enough to shift the dwarf planet’s center of mass. Pluto’s rotation slowed gradually due to gravitational forces from Charon, just as Earth is slowly losing spin under similar forces from its moon. However, because Charon is so large and so close to Pluto, the process led to Pluto locking one face toward its moon in just a few million years. The large mass of Sputnik Planitia would have had a 50 percent chance of either facing Charon directly or turning as far away from the moon as possible.

“It is like a Vegas slot machine with just two states, and Sputnik Planitia ended up in the latter position, centered at 175 degrees longitude,” said Hamilton.

It would also be easy for the accumulated ice to create its own basin, simply by pushing down, according to Hamilton.

“Pluto’s big heart weighs heavily on the small planet, leading inevitably to depression,” said Hamilton, noting that the same phenomenon happens on Earth: the Greenland Ice Sheet created a basin and pushed down the crust that it rests upon.

While Hamilton’s model can explain both the latitude and longitude of Sputnik Planitia, as well as the fact that the ices exist in a basin, several other models were also presented in the December 1, 2016 issue of the journal Nature.

In one of those papers, UC Santa Cruz Professor of Earth and Planetary Sciences Francis Nimmo, Hamilton and their co-authors modeled how Sputnik Planitia may have formed if its basin was caused by an impact, such as the one that created Charon. Their results showed that the basin may have formed after Pluto slowed its rotation, migrating only slightly to its present location. If this late formation scenario proves correct, the properties of Sputnik Planitia may hint at the presence of a subsurface ocean on Pluto.

“Either model is viable under the right conditions,” said Hamilton. “While we cannot conclude definitively that there is an ocean under Pluto’s icy shell, we also cannot state that there is not one.”

Although Pluto was stripped of its status as a planet, an ice cap is a surprisingly Earth-like property. In fact, Pluto is only the third body—Earth and Mars being the others—known to possess an ice cap. The ices of Sputnik Planitia may therefore offer hints relevant to more familiar ices here on Earth.

The research paper, "The rapid formation of Sputnik Planitia early in Pluto’s history," Douglas P. Hamilton; S. A. Stern; J. M. Moore; L. A. Young; and the New Horizons Geology, Geophysics & Imaging Theme Team, was published in the journal Nature on December 1, 2016.

This research was supported by NASA’s New Horizons project. The content of this article does not necessarily reflect the views of that organization.

UMD Researchers Crack the Code of a Deadly Virus

November 28, 2016
Contacts: 

Abby Robinson 301-405-5845

COLLEGE PARK, Md. – Venezuelan equine encephalitis virus (VEEV) is an unforgiving killer of horses, donkeys and zebras, resulting in mortality as high as 80 percent of infected animals. It causes rapid, catastrophic swelling of the brain and spinal cord, leading to severe neurological symptoms and—in many cases—sudden death. The virus also can infect people with similar results. According to the Centers for Disease for Disease Control and Prevention (CDC) there are about 6 human cases a year in the U.S. with a mortality of about 33 percent. The U.S. and Soviet Union both weaponized VEEV during the Cold War, prompting the CDC and the National Institutes of Health to classify VEEV as a category B pathogen.

A research team led by the University of Maryland has exploited a weakness in VEEV’s genetic code, resulting in a far less deadly mutant version of the virus when tested in laboratory mice. The new discovery could enable the development of a vaccine and other drugs to combat VEEV. The findings were published online November 16, 2016 in the Journal of Virology.

Like many other dangerous viruses, VEEV has RNA as its genetic material instead of DNA. Because a similar weakness exists in RNA viruses that pose serious health risks to humans—such as HIV, Zika, chikungunya and others—the discovery could advance the development of treatments for these viruses as well.

“RNA viruses tend to cause acute infections,” said Jonathan Dinman, professor and chair of the UMD Department of Cell Biology and Molecular Genetics, who is the senior author on the research paper. “You either fight them off quickly, like the common cold, or they overwhelm you, like Ebola.”

Dinman and his colleagues exploited a mechanism known as programmed ribosomal frameshifting (PRF), which allows RNA viruses to pack a larger amount of genetic information into a relatively short sequence of RNA. By prompting an infected cell to read the same sequence of RNA in two different phases, PRF allows a virus to create two different proteins instead of one.

The researchers created a mutant version of VEEV with a disrupted PRF mechanism, which impaired the virus’ ability to create a second protein from a specific section of RNA. Tests in cultured cells did not reveal a large difference in the rate of virus production. But when the researchers tested the mutant virus in laboratory mice, they saw a dramatic increase in the rate at which infected mice survived the disease.

“With some simple mutations, we compromised VEEV’s ability to be a virulent virus,” said Joe Kendra, a biological sciences graduate student at UMD and the lead author of the study. “This result shows that PRF might be a therapeutic target for other viruses. If we can confirm that the mutant virus confers immunity, opening the door to a vaccine, that will be very exciting.”

In addition to a higher survival rate of mice infected with mutant VEEV, the researchers also noted a lower incidence of the virus accumulating in brain tissues. Dinman, Kendra and their co-authors suspect that the missing protein in the mutant virus plays a role in the virus’ ability to cross the blood-brain barrier—an essential step to cause brain swelling.

“It’s interesting that the Venezuelan equine encephalitis virus (VEEV) virus uses PRF to survive, but we can also manipulate that mechanism to work against it,” said study co-author Yousuf Khan, an undergraduate biological sciences major and Goldwater Scholar at UMD. “This is a new way to target viruses and make vaccines. It opens up a lot of new research questions.”

According to Dinman, the finding is particularly encouraging in light of the challenge posed by climate change, as viral diseases begin to extend their range north beyond the tropics.

“So many of these diseases are borne by mosquitoes. Chikungunya is now established in the Caribbean, and Zika has been found in two counties in Florida,” Dinman said. “These viruses are on our doorstep. But these results give us hope. Developing a vaccine takes a long time, but with a concerted effort across government and academic labs, we have a good chance.”

The research paper, “Ablation of programmed -1 ribosomal frameshifting in Venezuelan equine encephalitis virus results in attenuated neuropathogenicity,” Joseph Kendra, Cynthia de la Fuente, Ashwini Brahms, Caitlin Woodson, Todd Bell, Bin Chen, Yousuf Khan, Jonathan Jacobs, Kylene Kehn-Hall and Jonathan Dinman, was published online November 16, 2016 in the Journal of Virology.

This work was supported by the Defense Threat Reduction Agency (Award No. HDTRA1-13-1-0005) and the National Institutes of Health (Award No. 2T32AI051967-06A1). The content of this article does not necessarily reflect the views of these organizations.

UMD Biological Sciences Senior Aaron Solomon Named Marshall Scholar

November 28, 2016
Contacts: 

Abby Robinson 301-405-5845

COLLEGE PARK, Md. -- University of Maryland senior Aaron Solomon has been named a 2017 Marshall Scholar. The Marshall Scholarship, which allows American students to pursue graduate study at any university in the United Kingdom, is considered one of the most prestigious academic awards available to college graduates. Aaron Solomon named Marshall Scholar

“Aaron is a young man bursting with ambition, creativity and grace,” said Mary Ann Rankin, senior vice president and provost at UMD. “He has already compiled a notable record of solution-driven research accomplishments and made extraordinary investments in service activities demonstrative of his deeply held commitment to improving the lives of others. We are privileged to count him among our own.”

Solomon—who is majoring in biological sciences, with a specialization in cell biology and genetics, and minoring in computer science—plans to use the scholarship toward a Master of Science degree in genomic medicine at Imperial College London followed by a Master of Philosophy degree in bioscience enterprise at the University of Cambridge. His long-term plans include earning his Ph.D. and pursuing a career in computational genomics.

“This is the opportunity of a lifetime,” said Solomon, who also completed a citation in the Integrated Life Sciences Program of the Honors College. “The Marshall Scholarship will enable me to study cutting-edge biomedical science on a global scale and collaborate internationally to enhance human health. Throughout my years in the United Kingdom, I hope to prepare myself to tackle future challenges at the nexus of science and society.”

UMD’s fifth Marshall Scholar, Solomon has extensive community service and research experience, including projects focused on drastically reducing greenhouse gas pollutants in agricultural fertilizers using nanoscience techniques, genetically engineering fungi to attack mosquitos carrying malaria and developing bioinformatic tools to better understand breast cancer patient data.

During a summer research internship in 2015, Solomon analyzed trauma resuscitations and developed new software to flag drugs effective at lowering mortality rates caused by infectious pathogens at the University of Maryland Medical Center’s R Adams Cowley Shock Trauma Center. He also coordinated the efforts of lawyers, researchers and institutional officials to negotiate a major data-use agreement with other medical institutions, enabling the resumption of a five-year research program that had been halted by institutional conflicts over information sharing.

“I would easily rank Aaron as the top undergraduate I have mentored during my 25-year career,” said Maureen McCunn, professor in the Department of Anesthesiology and Critical Care at the University of Maryland School of Medicine and Solomon’s mentor at the R Adams Cowley Shock Trauma Center. “Aaron’s work ethic is incredibly strong, he is never afraid to ask questions and is barely able to contain his inquisitiveness during even the most stressful situations. His curiosity seems genuinely boundless.”

Solomon has also applied his scientific knowledge and computational skills to the bioterrorism arena for the past year.

“When I received funding to develop a tool to assess the threat of insiders smuggling nuclear weapons by air, I took the unusual move of asking Aaron—an undergraduate—to lead the project's software development efforts,” said Gary Ackerman, director of the Unconventional Weapons and Technology Division at the National Consortium for the Study of Terrorism and Responses to Terrorism (START) at UMD. “It’s important to note how rare this was; this project is not mere academic research, Aaron and the team he assembled are producing a tool that will be used by government agencies, air carriers and airports around the world to prevent catastrophic threats.”

In March 2017, Solomon and two classmates will watch a biology experiment they developed launch to the International Space Station. The experiment aims to expand our understanding of how bacteria behave in microgravity—and ultimately how to safeguard space travelers.

“There’s nothing like fulfilling a childhood dream of flying to space—even if it’s by proxy of an experiment,” said Solomon, who is a graduate of Eleanor Roosevelt High School’s Science and Technology Magnet Program in Greenbelt, Maryland.

Among his several community service activities, Solomon currently directs the Maryland Minorities in Math tutoring program, which enables underprivileged youth at nearby schools to build the mathematical competency necessary for success in the sciences. As president, he tripled the size of the program, integrated computer science into the curriculum in hopes of spurring interdisciplinary curiosity and innovation among the students, and initiated the program in middle schools.

“Aaron is extraordinary,” said Richard Bell, a UMD associate professor of history who serves as UMD’s faculty advisor for United Kingdom fellowships. “He has a knack for teamwork and for building consensus and has repeatedly seized opportunities to apply his training in the biological sciences and computational mathematics to pressing real-world problems.”

Founded by a 1953 Act of Parliament and named in honor of U.S. Secretary of State George C. Marshall, the Marshall Scholarships commemorate the humane ideals of the Marshall Plan and they express the continuing gratitude of the British people to their American counterparts. The first class of 12 Marshall Scholars arrived in the United Kingdom in 1954; those elected today will enter universities in 2017.

The scholarships, which can be extended up to three years, provide university fees, cost of living expenses, an annual book grant, a thesis grant, research and daily travel grants, fares to and from the United States, and a contribution toward the support of a dependent spouse.

UMD Receives $3M NSF Grant to Train Graduate Students in Network Biology

November 22, 2016
Contacts: 

Abby Robinson 301-405-5845, Barabara Brawn-Cinani (writer)

 

COLLEGE PARK, Md. -- The University of Maryland recently received a five-year, $3 million National Science Foundation grant to help researchers in the life sciences learn how to transform the massive amounts of raw data made possible by the advent of powerful new technologies into useful information from which new biological insights can be inferred.

Through the NSF Research Traineeship grant, UMD is establishing a new training and research program in network biology. The Computation and Mathematics for Biological Networks (COMBINE) program will teach graduate students in the life sciences how to marry physics-style quantitative modeling with data processing, analysis and visualization methods from computer science to gain deeper insights into the principles governing living systems.

“More data does not mean better information without the interdisciplinary tools required to make the transformation,” said COMBINE’s principal investigator Michelle Girvan, an associate professor with a joint appointment in the Department of Physics and the Institute for Physical Science and Technology. In her own research, Girvan combines methods from statistical physics, nonlinear dynamics and computer science to develop network science tools that can address problems in computational biology and sociophysics.

The COMBINE program anticipates training approximately 60 Ph.D. students, including 35 who will be supported by 12-month fellowships. Participants will receive training in four areas of network analysis: quantitative metrics for biological networks; mechanistic models of biological networks; network statistics and machine learning for biological applications; and visualization techniques for large, complex biological data sets. This training will provide the foundation for research in at least one of the following areas: biomolecular, neuronal and/or ecological/behavioral networks.

Research experiences, interdisciplinary coursework, peer-to-peer tutorials and internships with partners—including the Smithsonian Institution, the National Institutes of Health, the University of Maryland School of Medicine and industry partners—will provide the graduate students with the skills needed to communicate complex scientific ideas to diverse audiences to maximize impact. Outreach activities will extend the benefits of the program to undergraduates, middle and high school students, and to the public at large.

COMBINE brings together a unique, multidisciplinary team of researchers. Co-principal investigators of the program are Associate Professor Daniel Butts and Professor Bill Fagan of the Department of Biology, and Associate Professor Hector Corrada Bravo and Professor Amitabh Varshney of the Department of Computer Science and the University of Maryland Institute for Advanced Computer Studies. Varshney also serves as interim vice president for research and chief research officer at UMD.

The highly competitive NSF Research Traineeship  program fosters development and implementation of bold, new, potentially transformative models for graduate education in science, technology, engineering and mathematics (STEM) fields. Fewer than 10 percent of proposals submitted to the program are funded.

"Innovative and interdisciplinary approaches will be key to tackling tomorrow’s scientific challenges, and today’s STEM graduate students will need to develop the skills to meet those challenges," said Joan Ferrini-Mundy, NSF assistant director for education and human resources. "The NSF Research Traineeship program is testing new models to train graduate students across STEM disciplines and to prepare them for contributions in diverse careers.”

This work is supported by the National Science Foundation (Award No. DGE1632976). The content of this article does not necessarily reflect the view of this organization.

Giant “Great Valley” Found on Mercury by Scientists from UMD and other Institutions

November 21, 2016
Contacts: 

Matthew Wright 301-405-9267

COLLEGE PARK, Md. – A newly discovered giant valley on the planet Mercury makes the Grand Canyon look tiny by comparison. Located by an international team of scientists from the University of Maryland, the Smithsonian Institution, the German Institute of Planetary Research and Moscow State University, the expansive valley holds an important key to the geologic history of the innermost planet in our solar system.
Mercury’s great valley (dark blue) and Rembrandt impact basin (purple)
Discovered using stereo images from NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, the “great valley” lies in the planet’s southern hemisphere and overlaps the Rembrandt Basin—a large crater formed by a relatively recent impact from an asteroid or other such body. But the “great valley” formed in a much different way, according to a research paper published online November 16, 2016 in the journal Geophysical Research Letters. In the image at right Mercury’s giant valley is shown in dark blue and its Rembrandt impact basin in purple.

Unlike Earth, which has a crust and upper mantle (collectively known as the lithosphere) divided into multiple tectonic plates, Mercury has a single, solid lithosphere that covers the entire planet. As the planet cooled and shrank early in its history, roughly 3-4 billion years ago, Mercury’s lithosphere buckled and folded to form the valley, much like the skin of a grape folds as it dries to become a raisin.

“This is a huge valley. There is no evidence of any geological formation on Earth that matches this scale,” said Laurent Montesi, an assistant professor of geology at UMD and a co-author of the research paper. “Mercury experienced a very different type of deformation than anything we have seen on Earth. This is the first evidence of large-scale buckling of a planet.”

The valley is about 250 miles wide and 600 miles long, with steep sides that dip as much as 2 miles below the surrounding terrain. To put this in perspective: if Mercury’s “great valley” existed on Earth, it would be almost twice as deep as the Grand Canyon and reach from Washington, D.C. to New York City, and as far west as Detroit.

More notable than its size, according to Montesi, is how the valley most likely formed and what that reveals about Mercury’s geologic history.

The valley’s walls appear to be two large, parallel fault scarps—step-like structures where one side of a fault moved vertically with respect to the other. Both scarps plunge steeply to the flat valley floor below. According to Montesi and his co-authors, the best explanation is that Mercury’s interior cooled rapidly, forming a strong, thick lithosphere. The entire floor of the newly discovered valley is one giant piece of this lithosphere that dropped between the two faults on either side.

This would make sense if, like most planets, Mercury has been steadily cooling since its formation. But Montesi notes that there are several clues to suggest that Mercury went through a more recent period of warming. This analysis, if true, would upend some time-tested assumptions about Mercury’s geologic past.

“Most features on Mercury’s surface are truly ancient, but there is evidence for recent volcanism and an active magnetic field. This evidence implies that the planet is warm inside,” Montesi said. “Everyone thought Mercury was a very cold planet—myself included. But it looks like Mercury might have heated significantly in recent planetary history.”

The research paper, “Fault-bound Valley Associated with the Rembrandt Basin on Mercury,” Thomas Watters, Laurent Montési, Jürgen Oberst, and Frank Preusker, was first published online November 16, 2016 in the journal Geophysical Research Letters.

This work was supported by NASA (Award No. NNX07AR60G) and the Russian Science Foundation (Award No. 14-22-00197). The content of this article does not necessarily reflect the views of these organizations.

UMD and other Leading Academic and Research Institutions Form Global Network to Accelerate Climate Action

November 17, 2016
Contacts: 

James Stillwell 301-405-3032

COLLEGE PARK, Md. – The University of Maryland through its Center for Global Sustainability has joined with 19 other leading academic and research institutions around the world to form Research for Climate Action (RCA), an international network connecting world-class research and analytical capabilities with key decision-makers in efforts to inform and spur action on climate change.

“There is unprecedented demand from decision-makers for robust technical and analytical input to guide action on climate change,” said Robert Orr, dean of the School of Public Policy at the University of Maryland and special advisor to the UN secretary-general on climate change. “RCA will help bridge the gap between knowledge and decision-making processes by harnessing the power of networks and information sharing among leading research institutions and global policy leaders.”

The coalition was announced this week at the 22nd session of the Conference of Parties (COP) of the United Nations Framework Convention on Climate Change (UNFCCC), where the global community is working to develop next steps in the path to implementing the Paris Agreement and achieving Sustainable Development Goals.

RCA brings together institutions actively engaged in advancing the research of climate mitigation, adaptation, and resilience, and connects them with decision-makers seeking to develop analytical expertise. “The United Arab Emirates is proud to support the Research for Climate Action initiative,” His Excellency Thani Al Zeyoudi, UAE minister of climate change and environment, said. “This global network aligns with the objectives of the forthcoming UAE National Climate Change Plan and will help to strengthen our policies and actions through greater information gathering/collection and data analysis.”

Lord Nicholas Stern, IG Patel professor of economics and government, chairman of the Grantham Research Institute on Climate Change and the Environment, and head of the India Observatory at the London School of Economics, emphasized that, “RCA’s focus on the demand side of the policy equation is both needed and timely. By directly offering decision-makers ideas for tailored products they should seek from the climate research community, this initiative will ensure a strong supply of cutting-edge climate knowledge which can translate effectively into ambitious action.”

Reflecting on her experiences as both a practitioner and academic, high-level climate champion Laurence Tubiana noted the important role that the research community has in supporting action: “Academic and research institutions need to acquire the capacity to provide strong analysis to inform action, and to share this with the wider community, including governments, the private sector, and civil society. Networks like Research for Climate Action will play an essential role in implementing the Paris Agreement.”

Ajay Mathur, director of The Energy and Resources Institute (TERI) in India, echoed the importance of knowledge sharing. “The implementation of the Paris Agreement and related SDGs requires multiple policy actions at different levels, and in different sectors. RCA would provide cross-country learning to these policy actions, as well as a robust relationship with local development goals.”

The need for better partnerships between research institutions worldwide was observed by Xue Lan, dean of the School of Public Policy and Management at Tsinghua University. “We are excited that this initiative is launching just as the implementation of the Paris Agreement starts. Tackling climate change is knowledge-intensive, and collaboration among researchers in different countries is much needed.” This sentiment was similarly reflected by Daniel Kammen, director of the Renewable and Appropriate Energy Laboratory at the University of California, Berkeley. “The Research for Climate Action network is precisely what we need to meet our sustainability challenge: innovation, competition, and partnership on the road to a transformed, inclusive, and equitable energy and water system.”

Harald Winkler, director of the Energy Research Centre at the University of Cape Town, captured the importance of RCA moving forward. “The focus on implementation of adaptation and mitigation actions, together with the required finance and technology, is an urgent priority, now that the Paris Agreement has entered into force. The RCA network is an exciting initiative to provide rigorous research on implementation and adaptive management.”

RCA brings together academic and research institutions that are actively engaged in advancing the research and practice of mitigation, adaptation, and resilience, and those seeking to develop analytical expertise in support of decision-makers. RCA partners reflect the commitment to being a global network addressing global challenges, with current engagement from research units in:

  • Blavatnik School of Government, University of Oxford
  • Energy Research Centre, University of Cape Town
  • The Energy and Resources Institute (India)
  • Federal University of Rio de Janeiro (UFRJ), Alberto Luiz Coimbra Institute of Graduate Studies and Research in Engineering (COPPE)
  • Grantham Research Institute for Climate Change and the Environment, London School of Economics
  • Institute for the Study of International Development at McGill University
  • International Center for Climate Change and Development (Bangladesh)
  • International Institute for Applied Systems Analysis (Austria)
  • Peking University, National School of Development
  • Potsdam Institute for Climate Impact Research
  • Pontifical Catholic University of Chile
  • Regional Centre for Climate Change and Decision Making (an initiative of UNESCO and AVINA)
  • School of Public Policy and Management at Tsinghua University
  • Tufts University Center for International Environment and Resource Policy
  • University of California at Berkeley, Renewable & Appropriate Energy Laboratory
  • Institute for Environment and Sanitation Studies, University of Ghana
  • University of Maryland Center for Global Sustainability
  • University of Michigan School of Natural Resources and the Environment
  • University of São Paulo
  • Yale University Center for Green Chemistry and Engineering

RCA will work to identify high-priority areas for analytical support and leverage the capacity and capabilities of partners in meeting these needs. The rollout of projects is planned to begin in 2017.

For more information: www.researchforclimateaction.org

Pages

December 9
Julie Lenzer to serve as Associate Vice President for Economic Development and Director of UM Ventures – College Park Read
December 8
Research points to importance of language recall in addition to that of language exposure Read
December 1
New UMD-led study suggests heart's location and Charon's existence led to heart's formation Read
November 28
Discovery could help the fight against HIV, Zika and other viruses Read