Tuesday, December 17, 2024

Logo for the University of Maryland Right Now Site
Skip to Content

A resource for media highlighting UMD experts, cutting-edge research and innovation, rankings, and breaking campus news

All News Releases

A New Model for Communication in Plant Cells

UMD-led study details how plant cells use animal-like nerve proteins to build single-cell communication networks.

CONTACTS:

Matthew Wright , 301-405-9267 mewright@umd.edu

Envelope

A UMD-led study published in the journal Science sheds new light on how plants communicate within cells using a protein that closely resembles a protein that in animals plays a role in communications between nerve cells.

Science cover

Although plants lack a true nervous system, previous studies have shown that plants need these proteins, called glutamate receptor-like proteins (GLRs), to do important things such as mate, grow, and defend themselves against diseases and pests.

In the current study, researchers working with pollen cells from a flowering weed native to Europe, Asia and Africa (Arabidopsis thaliana), found that these GLR proteins form the basis of a complex communication network inside individual plant cells.

The research, which could inform many new studies of cell-to-cell communication in plants and animals alike, is featured on the cover of the May 4, 2018, issue of Science. Researchers from the University of Maryland, the Instituto Gulbenkian de Ciência in Portugal and the Universidad Nacional de Autónoma de Méxicoauthored the study.

The similarities between the animal nerve proteins (glutamate receptors) and the similar GLR plant proteins suggests that the two proteins date back to a common ancestor—a single-celled organism that gave rise to both animals and plants.

“Why should plants have receptors like the ones that make neurons work? Our results support the idea that individual plant cells have a level of autonomy that animal cells do not,” said José Feijó, a professor of cell biology and molecular genetics at UMD and the senior author of the study. “Each plant cell has its own immune system, for example. And they have more communication channels to deal with the fact that they are stuck in place. Every flowering plant has more GLRs than animals have glutamate receptors. Our proposed model for plant cell communication suggests one reason for this abundance of GLRs.”

Further progress toward decoding plant communication could result in reliable tests to diagnose diseases, nutrient deficiencies and other maladies in plants, Feijó said. Such measures could help to ensure food security, as climate change and other stressors begin to take a toll on major agricultural crops.

Elaborating a two-protein process

The new findings suggest that GLRs rely on another group of proteins, called “cornichon” proteins, to shuttle GLRs to different locations in plant cells and to regulate activity of the protein within each cell.

With the help of cornichon proteins, GLRs act as valves that carefully manage the concentration of calcium ions—a vital aspect of many cell communication pathways—within various structures inside the cell, the study found.

“Calcium concentration is one of the most important parameters inside all cells. It is so well regulated that it allows cells to encode information. Put another way, calcium is the lingua franca of cell communication,” said Feijó, noting that calcium is also vital to the function of animal neurons. “Our results suggest that GLRs play a role in this basic communication system in plants, and we also propose a mechanism for how the system works in plant cells.”

Feijó noted that there are some important differences between GLRs and their counterparts in animal neurons.

To begin with, glutamate—the most common neurotransmitter in the human brain—does not play a major role in the plant system. Also, while glutamate receptors are known to sit on the outer surface of animal neurons, some of Feijo’s earlier experiments suggested that GLRs might instead be located on various structures inside plant cells.

“This would be the only way to consistently explain the results we were getting,” Feijó said. “Our results suggest that GLRs are indeed redistributed to other compartments inside plant cells, forming a complex network that cooperates to regulate calcium concentrations and enable calcium signaling. This is a novel insight that opens completely new avenues to understand calcium signaling in plants.”

Feijó and Michael Wudick, a postdoctoral researcher in cell biology and molecular genetics at UMD and lead author of the paper, suspected that plant cells use a specific mechanism to control the locations of GLRs throughout the cell. This led Wudick to investigate cornichon proteins, which are linked to the activity of glutamate receptors in animals.

In their experiments with Arabidopsis pollen cells, Feijó’s team found that cornichon proteins actively shuttled GLRs from one location to another within the cell, enabling various compartments inside the cell to maintain different calcium ion concentrations. Cornichons also act as gatekeepers for GLRs, switching the receptor molecules off and on like a valve in response to changing conditions inside the cell.

Feijó also noted that a deeper understanding of GLRs could reveal new insights into animal glutamate receptors and their defects, which could be the cause of some neurodegenerative conditions.

“Some researchers have suggested that neurodegeneration is caused by over-active glutamate receptors. This is not settled, but there are some conditions in both humans and dogs that have been linked to mutations in glutamate receptor genes,” Feijó said. “It is possible that our model could help investigate these conditions. The advantage is that our protocol is very easy to use.”

This work was supported by the U.S. National Science Foundation (Award Nos. MCB 1616437/2016 and MCB 1714993/2017), the Fundação para a Ciência e a Tecnologia (Award Nos. PTDC/BEX-BCM/0376/2012, PTDC/BIA-PLA/4018/2012, SFRH/PD/70739/2010 and SFRH/PD/70820/2010), the Consejo Nacional de Ciencia y Tecnología (Award No. 220085), and the Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (Award No. IN-203817). The content of this article does not necessarily reflect the views of these organizations.

Tags:

Biology Chemical and Biomolecular Engineering Research

Colleges and Schools:

College of Computer, Mathematical, and Natural Sciences

Media Inquiries