Facebook Icon Youtube Icon Twitter Icon Flickr Icon Vimeo Icon RSS Icon Itunes Icon Pinterest Icon
Wednesday, March 1, 2017

Search Google Appliance

UMD Capitol Hill Forum Addresses Health Disparities Research & Action for Equity

September 23, 2016
Contacts: 

Contacts: Elise Carbonaro, 301-405-6501

COLLEGE PARK, Md. – The University of Maryland, in collaboration with Rep. John P. Sarbanes and the Big Ten Academic Alliance, recently convened more than 100 people for a Research on the Hill forum focused on strategies to achieve health equity at the Rayburn House Office Building in Washington, D.C. Moderated by Stephen B. Thomas, Ph.D., professor and director of the Maryland Center for Health Equity in the UMD School of Public Health, the panel discussion engaged experts from academia, federal health agencies and the private business sector in a candid conversation about how to eliminate racial and ethnic health disparities among vulnerable populations.

“Our exploratory research holds the solutions to many of the most challenging problems of our day,” said UMD Vice President and Chief Research Officer Patrick G. O’Shea, Ph.D. “As a university, it is our mission to create and understand knowledge to develop better ways to house and heal and fuel and feed our people in advanced societies that are just, secure, and free. Achieving health equity touches on the ‘heal’ aspect of that mission.”

The topics ranged from the progress that has been made in access to medical care as a result of the Affordable Care Act (ACA) to challenges that still remain in improving quality of care and in making the medical care system incorporate public health and address the social determinants of health that prevent people from acting health promotion and disease prevention recommendations. 

“The state of Maryland has embraced the ACA and there is clear evidence that the new incentives are indeed moving hospital systems away from a fee-for-service business model to one that rewards quality care and positive health outcomes over the volume of procedures,” said Thomas. “While the transition is not perfect, our state is a national leader for what the future of health care will look like.”

Panel members shared examples of effective and innovative community-based health interventions and public-private partnerships that are making a difference through culturally-tailored health promotion and disease prevention services, and highlighted the emergence of social determinants of health such as poverty, discrimination and residential segregation as factors that must be overcome.

 “I’m convinced that if you address racial and ethnic disparities with respect to the delivery of health care and health care coverage in this country, you will build the best health care system we can possibly have because diversity is our country’s hallmark,” said Congressman Sarbanes, who, as a member of the House Energy and Commerce Committee, has been a tireless advocate for improving healthcare quality and addressing health disparities.
 
To achieve health equity, researchers, policymakers, and industry leaders must address broader issues beyond the traditional biomedical model and build trust between those who control health care delivery system and those who have lost hope in the system, said members of the panel. 

The panelists recommended that health equity be incorporated into all public policies, not just those related to health care, to reduce and ultimately eliminate health disparities. 

Panel members included:

  • Margo Edmunds, Ph.D., Vice President, Evidence Generation and Translation at Academy Health;
  • J. Nadine Gracia, M.D., M.S.C.E., Deputy Assistant Secretary for Minority Health and Director of the Office of Minority Health within the U.S. Department of Health and Human Services;
  • Julia Huggins, President of Cigna Mid-Atlantic;
  • Kolawole Okuyemi, M.D., MPH, Professor of the Department of Family Medicine and Community Health, Director of the Program in Health Disparities Research and Inaugural Endowed Chair for Health Equity at the University of Minnesota; and
  • Eliseo Pérez-Stable, M.D., Director of the National Institute on Minority Health and Health Disparities at the National Institutes of Health.

House Democratic Whip Steny H. Hoyer, who represents Maryland’s 5th Congressional District and is a distinguished UMD alumnus, also joined the event and emphasized that as an interconnected community, we should all care about health disparities.
 
“It is unacceptable that in the United States, where all are created equal in the words of our Declaration of Independence, that one’s access to healthcare may be higher or lower as a result of race, gender, or income,” said Congressman Hoyer. “Everybody being healthy is of concern to each and every one of us.”
 
He discussed how we must continue to defend the patient protections that Americans are benefiting from thanks to the ACA, such as the no-cost access to preventive services like mammograms and immunizations, as well as remind people of the dramatic increase in the number of people, particularly people of color, who now have health coverage as a result.

The event was held as part of the University of Maryland’s Research on the Hill series, which is aimed at raising awareness of research with great societal significance.

View the conversation at: https://youtu.be/HPedKr0jZLQ

UMD Study Finds Connecting Uninsured Patients to Primary Care Could Reduce ER Use

May 6, 2015
Contacts: 

Kelly Blake 301-405-9418
Hillery Tsumba 301-628-3425

Montgomery County, Md. Initiative Could Improve Health, Reduce Costs

COLLEGE PARK, Md. – An intervention to connect low-income uninsured and Medicaid patients to a reliable source of primary health care shows promise for reducing avoidable use of hospital emergency departments in Maryland. A University of Maryland School of Public Health study evaluating the results of the intervention was published this week in the May issue of the journal Health Affairs

For twenty years, use of hospital emergency departments has been on the rise in the United States, particularly among low-income patients who face barriers to accessing health care outside of hospitals, including not having an identifiable primary health care provider. Almost half of emergency room visits are considered “avoidable.” The Emergency Department-Primary Care Connect Initiative of the Primary Care Coalition, which ran from 2009 through 2011, linked low-income uninsured and Medicaid patients to safety-net health clinics. 

“Our study found that uninsured patients with chronic health issues – such as those suffering from hypertension, diabetes, asthma, COPD, congestive heart failure, depression or anxiety – relied less on the emergency department after they were linked to a local health clinic for ongoing care,” says Dr. Karoline Mortensen, assistant professor of health services administration at the University of Maryland School of Public Health and senior researcher. “Connecting patients to primary care and expanding the availability of these safety-net clinics could reduce emergency department visits and provide better continuity of care for vulnerable populations.”  

Funded by a grant from the Centers for Medicare & Medicaid Services and the Maryland Department of Health and Mental Hygiene, the initiative engaged all five of the hospitals operating in Montgomery County, Maryland at the time, and four safety-net clinics serving low-income patients. Using “patient navigators,” individuals trained to help patients find the care they need and can afford, these hospitals referred more than 10,000 low-income, uninsured and Medicaid patients who visited emergency departments to four local primary care clinics, with the goal of encouraging them to establish an ongoing relationship with the clinic and reduce their reliance on costly emergency department care. 

Two hospitals in Montgomery County who participated in the intervention continued the program after the initial grant period concluded because of the benefits they saw for patients and for reducing emergency department visits and associated costs. These hospitals are currently testing a new version of the intervention specifically deigned to link emergency department patients with behavioral health conditions to appropriate community-based services. 

While hospital administrators and health policy experts throughout the country are recognizing that access to primary care improves continuity of care for patients and reduces avoidable use of emergency departments, the implications of this project are particularly important for hospitals in Maryland, which are now operating under a unique all-payer model for hospital payments. Within this new payment structure, Maryland hospitals will have to meet ambitious spending, quality of care, and population health goals. Reducing avoidable use of emergency departments can help in reaching these goals.

The project provides promise not only for hospitals in Maryland but throughout the nation to improve health care experiences and outcomes for their patients. Shared learning systems were an integral component of the project so participants were learning from each other and sharing best practices throughout the project and that learning has now been documented and can be replicated in other communities.

“This was an incredibly rewarding project to work on,” says Barbara H. Eldridge, Manager of Quality Improvement at the Primary Care Coalition. “We created a learning system that permits us to sustain improved communication between patients and their providers, between hospital discharge planners and community based clinics, and across five hospitals operating in Montgomery County.” The initiative has proven successful in Montgomery County, Maryland and is being replicated in communities in other parts of the country. 

“Linking Uninsured Patients Treated In The Emergency Department To Primary Care Shows Some Promise In Maryland” was written by Theresa Y. Kim, Karoline Mortensen, and Barbara Eldridge and published in the journal Health Affairs

University Launches Dynamic, Interactive Information Website UMD Right Now

December 4, 2012
Contacts: 

Crystal Brown 301-405-4618 crystalb@umd.edu

College Park, Md. – Today, the University of Maryland launched a brand-new multimedia news and information portal, UMD Right Now, which provides members of the media and the public with real-time information on the university and its extended community.

UMD Right Now replaces Newsdesk, which previously served as the university’s news hub and central resource for members of the media. The new site is aimed at reaching broader audiences and allows visitors to keep up with the latest Maryland news and events, view photos and videos and connect with the university across all of its social media platforms.

“We designed UMD Right Now to be a comprehensive, vibrant site where visitors can find new and exciting things happening at Maryland,” said Linda Martin, executive director, Web and New Media Strategies. “Through social media, video, photos and news information, we hope to engage visitors and compel the community to explore all that Maryland has to offer.”

The new website, umdrightnow.umd.edu, contains up-to-date news releases and announcements, facts and figures about the university, a searchable database of faculty and staff experts, information highlighting innovation and entrepreneurship at UMD, additional resources for news media and other campus and athletics news.

“UMD RightNow is the place to go to find out all the things happening on and around campus on any given day,” said Crystal Brown, chief communications officer. “This website brings real-time news, events and information right to your fingertips.”

For more information and contact information for the Office of University Communications, please visit umdrightnow.umd.edu.

New Link Found Between Sex and Viruses

February 28, 2017
Contacts: 

Matthew Wright 301-405- 9267

COLLEGE PARK, Md. – Sexual reproduction and viral infections have a lot in common. According to new research, both processes rely on a single protein for the seamless fusion of two cells—sperm and egg cells and virus and cell membrane. This protein is widespread among viruses, single-celled protozoans, and many plants and arthropods, but is not found in fungi or vertebrates such as humans.

Ribbon diagram images of two closely related proteins

William Snell, a senior author of the study and research professor at the University of Maryland, Department of Cell Biology and Molecular Genetics, and colleagues from the Pasteur Institute, University of Texas Southwestern Medical Center, Global Phasing, Ltd., Hannover Medical School and German Center for Infection Research, published their findings in the February 23 issue of Cell.

The international research team notes that the protein, called HAP2, acts as a common, biochemical “key” that enables two cell membranes to become one, resulting in the combination of genetic material—a necessary step for sexual reproduction. The researchers say the findings suggest that the protein could provide a promising target for the development of vaccines, therapies and other disease control methods, which  could help fight parasitic diseases, such as malaria, and boost efforts to control insect pests.

“Our findings show that nature has a limited number of ways it can cause cells to fuse together into a single cell,” said Snell. “A protein that first made sex possible—and is still used for sexual reproduction in many of Earth’s organisms—is identical to the protein used by dengue and Zika viruses to enter human cells. This protein must have really put the spice in the primordial soup.”

Snell and team studied HAP2, in the single-celled green alga Chlamydomonas reinhardtii. HAP2 is common among single-celled protozoans and plants and arthropods. Prior results from Snell and collaborators, as well as other research groups, indicate that HAP2 is necessary for sex cell fusion in the organisms that possess the protein. But prior to this new study, the precise mechanism was unclear.

For the current study, Snell and his UT Southwestern colleagues used sophisticated computer analysis tools to compare the amino acid sequence of Chlamydomonas HAP2 with that of known viral fusion proteins. The results suggested a striking degree of similarity, especially in a region called the “fusion loop” that allows the viral proteins to successfully invade a cell. If HAP2 functioned like a viral fusion protein, Snell reasoned, then disrupting HAP2’s fusion loop should block its ability to fuse sex cells.

When Snell’s team changed just a single amino acid in the fusion loop of Chlamydomonas HAP2, the protein lost its function entirely. The sex cells were able to stick together—a process that depends on other proteins—but they were not able to complete the final fusion of their cell membranes. Similarly, the cells could not fuse when the researchers introduced an antibody that covered up the HAP2 fusion loop.

“We were thrilled with these results, because they supported our new model of HAP2 function,” Snell said. “But we needed to visualize the three-dimensional structure of the HAP2 protein to be sure it was similar to viral fusion proteins.”

Snell reached out to Felix Rey, a structural biologist at the Pasteur Institute in Paris who specializes in viruses. Rey and his colleagues determined the structure of Chlamydomonas HAP2 using X-ray crystallography. Rey’s results demonstrated that HAP2 was functionally identical to dengue and Zika viral fusion proteins.

“The HAP2 protein from Chlamydomonas is folded in an identical fashion to the viral proteins,” Rey said, referring to the molecular folding that creates the three-dimensional structure of all proteins from a simple chain of amino acids. “The resemblance is unmistakable.”

HAP2 appears to be necessary for cell fusion in a wide variety of organisms, including disease-causing protozoans, invasive plants and destructive insect pests. So far, every known version of HAP2 shares the one critical amino acid in the fusion loop region. As such, HAP2 could provide a promising target for vaccines, therapies and other control methods.

Snell is particularly encouraged by the possibility of controlling malaria, which is caused by the single-celled protozoan Plasmodium falciparum.

“Developing a vaccine that blocks the fusion of Plasmodium sex cells would be a huge step forward,” Snell said, noting that Plasmodium has a complex life cycle that depends on both mosquito and human hosts. “Our findings strongly suggest new strategies to target Plasmodium HAP2 that could disrupt the mosquito-borne stage of the Plasmodium life cycle.”

In addition to Snell and Rey, co-authors of study, “The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein,”  include Juliette Fedry, Gerard Péhau-Arnaudet, M. Alejandra Tortorici, Francois Traincard and Annalisa Meola (Pasteur Institute); Yanjie Liu, Jimin Pei, Wenhao Li and Nick Grishin (UT Southwestern); Gerard Bricogne (Global Phasing, Ltd.) and Thomas Krey (Pasteur Institute, Hannover Medical School and German Center for Infection Research).

Snell joined UMD in June 2016 and performed the majority of the work at his previous institution, the University of Texas Southwestern Medical Center.

Research was supported by the United States National Institutes of Health (Award Nos. GM56778 and GM094575), the Welch Foundation (Award No. I-1505), the European Research Council, the Pasteur Institute and the French National Center for Scientific Research. The content of this article does not necessarily reflect the views of these organizations. 


Photo caption: This pair of “ribbon diagram” images compares the three-dimensional structures of two closely related proteins, determined by X-ray crystallography: (L) the HAP2 protein from the single-celled alga Chlamydomonas reinhardtii and (R) the fusion protein from dengue virus. Both proteins are necessary for fusion with a cell membrane, enabling both sexual reproduction (via the fusion of sex cells) and viral invasion of a cell, respectively. New research suggests that these proteins are functionally identical and evolved early in the history of life on Earth. Felix Rey/Pasteur Institute 

UMD Named a 2017 Best Value College by The Princeton Review

February 24, 2017
Contacts: 

Natifia Mullings 301-405-4076

COLLEGE PARK, Md. – For the seventh consecutive year, the University of Maryland has been named a Best Value College in The Princeton Review’s latest book “Colleges That Pay You Back: The 200 Schools That Give You The Best Bang For Your Tuition Buck.” Published every year, The Princeton Review profiles the nation’s best schools for academic programs, affordability and career prospect. 

According to The Princeton Review, the University of Maryland offers a comprehensive aid program for students who demonstrate financial need and boasts a full suite of merit-based scholarships, making a UMD degree an exceptional value. This includes a prestigious merit scholarship, the President’s scholarship, and several national merit, creative and performing arts and departmental scholarships.

In addition to its affordability, the University of Maryland is highlighted for its diversity, outstanding honors programs and special access to agencies, companies, and organizations within its community. 

“More than 100 undergraduate degrees are offered here, and the university’s location near Washington, D.C. means that top-notch research and internship opportunities are literally in your backyard," said the book’s editors.

The Princeton Review evaluated 650 U.S. universities based on 40 indicators, including academic quality, cost, availability of financial aid, graduation rates, student debt, alumni salaries and job satisfaction.

UMD has performed well in a variety of national rankings. Maryland ranked No. 14 among American public universities, according to Forbes Magazine. The university also ranked No. 8 for “best value” for in-state students and No. 10 for out-of-state-students in the Kiplinger’s Personal Finance Magazine. The Princeton Review and Entrepreneur Magazine ranked UMD No. 9 for its undergraduate entrepreneurship program. 

 

University of Maryland Recognized as a Top Producer of U.S. Fulbright Students

February 23, 2017
Contacts: 

Natifia Mullings 301-405-4076

COLLEGE PARK, Md. —The University of Maryland has been named to the list of American colleges and universities that produced the most 2016-2017 Fulbright U.S. Students by the U.S. Department of State’s Bureau of Educational and Cultural Affairs. 

Fifteen UMD students and alumni were awarded a Fulbright grant to study, conduct research or teach English around the world. This year’s recipients include five seniors, six graduate students, and four alumni who will travel to various countries to facilitate projects in academic specialty areas such as dance, environmental science, public health, biology, international relations, history, and geography.

Read more about UMD’s Fulbright winners

Since its inception in 1946, the Fulbright Program has provided more than 370,000 participants—chosen for their academic merit and leadership potential — with the opportunity to exchange ideas and contribute to finding solutions to shared international concerns. Over 1,900 U.S. students, artists and young professionals in more than 100 different fields of study are offered Fulbright Program grants to study, teach English, and conduct research annually. The Fulbright U.S. Student Program operates in over 140 countries throughout the world.  

The top Fulbright-producing institutions are highlighted in the Feb. 21 edition of The Chronicle of Higher Education.

 

 

 

 

UMD Researchers Use Space Laser Technology to Explain Dry Season Growth in Amazon Rainforest

February 22, 2017
Contacts: 

Sara Garvin 301-405-1733

COLLEGE PARK, Md.For more than a decade, scientists have debated what’s known as the “green up” phenomenon in the Amazon rainforest—when vegetation appears to thrive and grow fuller during the dry season with little or no rainfall. While some researchers have supported hypotheses that drought-induced growth does occur in the Amazon, others have argued it is more likely an optical illusion created by shadows cast from satellite positioning.

Photo of seasonal changes in canopy and understory over the AmazonNew research from the University of Maryland Department of Geographical Sciences published in the Proceedings of the National Academies of Sciences (PNAS) utilizes lidar satellite technology to more accurately measure seasonal changes in leaf area within the Amazon. Research Associate Hao Tang and Professor Ralph Dubayah analyzed data sets collected from NASA’s Geoscience Laser Altimeter System (GLAS) and found strong evidence of green up during the dry season in both the tree canopy and the underbrush; just not at the same time.

“Trees in the Amazon forests not only respond to seasonal environmental changes, but also have active ecological interactions as a community,” Tang said. “Tall trees grow leaves at the early dry season when both water and light are abundant; they then drop leaves during the mid-to-late dry season, not only protecting themselves from drought but also helping understory and small trees grow.”

“This pattern is easily missed if you average over the entire Amazon basin because it progresses, almost like a wave, from south to north, with the dry season,” Dubayah added. “There is a plausible, ecological explanation for this: Light is driving the growth of the canopy in the early dry season and light from small gaps in the canopy that form later in the dry season drive the growth of the small shrubs and trees near the forest floor.”

The UMD researchers stress the need for better lidar observations of the Amazon’s canopy structure from space in order to more fully understand how rainforests respond to environmental and climate changes. Dubayah leads UMD’s Global Ecosystem Dynamics Investigation (GEDI), a NASA-funded mission to place a multi-beam laser instrument on the International Space Station in late 2018.

“The GEDI mission is optimized precisely to make these kinds of difficult measurements possible. It will provide more than 15 billion cloud-free observations during its 18-month mission and should greatly enhance our ability to understand canopy dynamics in the Amazon and elsewhere,” Dubayah said.  


Photo caption: Seasonal changes in canopy and understory over the Amazon

 

UMD Physicist Improves Method for Designing Experimental Fusion Reactors

February 15, 2017
Contacts: 

Matthew Wright 301-405-9267

Photo of new stellarator coils

COLLEGE PARK, Md. – Development of nuclear fusion—the process that powers stars—into a viable source for energy on Earth remains far in the future. However, a new software advance created by University of Maryland physicist Matt Landreman could help speed the process a bit by bringing down the cost and time needed to build stellarators, one of the two types of complex nuclear fusion reactors used to explore fusion’s potential as an energy source.

Stellarators work by generating a ring of blazing-hot plasma inside a precisely shaped magnetic field generated by a complex arrangement of external electromagnetic coils. Landreman's new method is better at balancing tradeoffs between the ideal magnetic field shape and potential coil shapes, resulting in designs with more space between the coils. This extra space allows better access for repairs and more places to install sensors.

Inside a fusion reactor, when the plasma gets to several million degrees—as hot as the interior of the sun—atomic nuclei begin to fuse together, releasing massive amounts of energy. Modern computer-aided designs for the complex configuration required for stellarators has boosted interest in these reactors—the first of which were designed and built in the 1950s—versus the competing fusion reactor design known as the tokamak.

To build a rare and expensive stellarator reactor, engineers first use a series of algorithms to create exacting plans for the design of the elaborate ring of electromagnetic coils. The wide variety of possible coil shapes that can generate identical magnetic fields, adds levels of complexity to this design process. Landreman is one of the few researchers who have studied how to choose the best among all potential coil shapes for a specific stellarator.

Through this work, he has made an important revision to one of the most common software tools used to design stellarators. Landreman’s new method is described in a paper published February 13, 2017 in the journal Nuclear Fusion.

“Instead of optimizing only the magnetic field shape, this new method considers the complexity of the coil shapes simultaneously. So there is a bit of a tradeoff,” said Landreman, an assistant research scientist at the UMD Institute for Research in Electronics and Applied Physics (IREAP) and sole author of the research paper. “It’s a bit like buying a car. You might want the cheapest car, but you also want the safest car. Both features can be at odds with each other, so you have to find a way to meet in the middle.”

Researchers used the previous method, called the Neumann Solver for Fields Produced by External Coils (NESCOIL) and first described in 1987, to design many of the stellarators in operation today—including the Wendelstein 7-X (W7-X). The largest stellarator in existence, W7-X began operation in 2015 at the Max Planck Institute of Plasma Physics in Germany.

“Most designs, including W7-X, started with a specifically shaped magnetic field to confine the plasma well. Then the designers shaped the coils to create this magnetic field,” Landreman explained. “But this method typically required a lot of trial-and-error with the coil design tools to avoid coils coming too close together, making them infeasible to build, or leaving too little space to access the plasma chamber for maintenance.”

Landreman’s new method, which he calls Regularized NESCOIL—or REGCOIL for short—gets around this by tackling the coil spacing issue of stellarator design in tandem with the shaping of the magnetic field itself. The result, Landreman said, is a fast, more robust process that yields better coil shapes on the first try.

“In mathematics, we’d call stellarator coil design an ‘ill-posed problem,’ meaning there are a lot of potential solutions. Finding the best solution is highly dependent on posing the problem in the right way,” Landreman said. “REGCOIL does exactly that by simplifying coil shapes in a way that the problem can be solved very efficiently.”

Modeling tests performed by Landreman suggest that the designs produced by REGCOIL confine hot plasma in a desirable shape, while significantly increasing the minimum distances between coils.

“This field is still in the basic research stage, and every new design is totally unique,” Landreman said. “With these incompatible features to balance, there will always be different points where you can decide to strike a compromise. The REGCOIL method allows engineers to examine and model many different points along this spectrum.”

The research paper, “An improved current potential method for fast computation of stellarator coil shapes,” Matt Landreman, was published February 13, 2017 in the journal Nuclear Fusion. 

This work was supported by the United States Department of Energy (Award Nos. DE-FG02-93ER54197 and DE-AC02-05CH11231). The content of this article does not necessarily reflect the views of this organization.


 Photo caption: The solid lines are shapes made by the old software, while the dotted lines are shapes made by the new software. Matt Landreman/University of Maryland physicist.

 

 

 

University of Maryland Blood Test Offers Potential Aid in Schizophrenia Diagnosis

February 13, 2017
Contacts: 

Alyssa Wolice 301-405-3936

COLLEGE PARK, MD. — Researchers from the University of Maryland College Park (UMD) and Baltimore (UMB) campuses have developed a blood test that could help doctors more quickly diagnose schizophrenia and other disorders. Their study, “Redox Probing for Chemical Information of Oxidative Stress,” was recently published in the journal Analytical Chemistry.

“We hope our new technique will allow a more rapid detection and intervention for schizophrenia, and ultimately lead to better outcomes,” said Gregory Payne, one of the authors and a joint professor with UMD’s Fischell Department of Bioengineering (BIOE) and the Institute for Bioscience and Biotechnology Research (IBBR).  IBBR is a partnership of the University of Maryland College Park, the University of Maryland Baltimore (UMB), and the National Institute of Standards and Technology (NIST).

Schizophrenia is a chronic, severe mental disorder that affects approximately one percent of the U.S. adult population and influences how a person thinks, feels, and behaves. The onset of symptoms usually begins between ages 16 and 30. Symptoms can range from visual and auditory hallucinations and movement disorders to difficulty beginning and sustaining activities.

Currently, diagnosing schizophrenia and similar disorders requires a thorough psychological evaluation and a comprehensive medical exam to rule out other conditions. A patient may be evaluated for six months or more before receiving a diagnosis and beginning treatment, particularly if he or she shows only early signs of the disorder.

Recent studies have indicated that patient outcomes could be improved if the time elapsed between the onset of symptoms and the initiation of treatment is much shorter. For this reason, researchers believe a chemical test that could detect oxidative stress in the blood—a state commonly linked with schizophrenia and other psychiatric disorders—could be invaluable in helping to diagnose schizophrenia more quickly.

The UMD and UMB team, led by IBBR research associate Eunkyoung Kim, used a discovery-driven approach based on the assumptions that chemical biomarkers relating to oxidative stress could be found in blood, and that they could be measured by common electrochemical instruments.

Building on an understanding of how foods are tested for antioxidants, an iridium salt was used to probe blood serum samples for detectable optical and electrochemical signals that indicate oxidative stress in the body. The promising initial tests have shown various biological reductants can be detected, including glutathione, the most prominent antioxidant in the body.

The group worked with professor of psychiatry Deanna Kelly and her team at the Maryland Psychiatric Research Center, University of Maryland School of Medicine, to perform an initial clinical evaluation using serum samples from 10 clinical research study participants who had been diagnosed with schizophrenia, and a healthy control group. Using the new testing method, the research group was able to correctly differentiate the samples of those who had been diagnosed with schizophrenia from those who had no history of the disorder.

“Much emerging data suggests that schizophrenia and other psychiatric disorders may be due, in part, to inflammation and oxidative stress abnormalities,” Kelly said. “Current methods for measuring these potential biomarkers are not standardized and have many flaws. Our team is excited to work with our collaborators at the University of Maryland, College Park to help develop a technique that can more globally measure these outcomes. Being able to have a subjective marker for clinical response or aid in more prompt diagnosis could be revolutionary.”

Researchers from the university’s Fischell Department of Bioengineering (BIOE), Institute for Bioscience and Biotechnology Research (IBBR), Institute for Systems Research (ISR), Department of Electrical and Computer Engineering (ECE) and MEMS Sensors and Actuators Laboratory (MSAL), as well as the University of Maryland School of Medicine’s Psychiatric Research Center contributed to the paper. The full list of authors is: Eunkyoung Kim (BIOE/IBBR), Thomas E. Winkler (BIOE/MSAL), Christopher Kitchen (Maryland Psychiatric Research Center), Mijeong Kang (BIOE/IBBR), George Banis (BIOE/MSAL), William Bentley (BIOE/IBBR), Deanna Kelly (Maryland Psychiatric Research Center, University of Maryland School of Medicine), Reza Ghodssi (ISR/ECE/MSAL/BIOE), and Gregory Payne (BIOE/IBBR).

This research is supported by the National Science Foundation, the Defense Threat Reduction Agency, and the National Institutes of Health.

Pages

Photo of Peace Crop Top College Seal
February 28
The University of Maryland ranks 15th among large schools.  Read
February 28
A protein required for sperm-egg fusion is identical to a protein viruses use to invade host cells.  Read
February 24
The University of Maryland is one of the nation's best colleges for students seeking a superb education with great... Read
February 23
The University of Maryland is among the country's top 25 producers of Fulbright scholarship winners, with 15 students... Read